The overexpression of multidrug resistance-associated proteins and gankyrin contribute to arsenic trioxide resistance in liver and gastric cancer cells.

نویسندگان

  • Xi Chen
  • Mu Zhang
  • Lian-Xin Liu
چکیده

Arsenic trioxide has been used as a therapeutic agent for acute promyelocytic leukemia and recently for some solid tumors. Although arsenic trioxide has been shown to significantly inhibit the growth of solid tumor cells in vitro, clinical trials indicate that arsenic trioxide alone is pool active against non-hematologic malignant diseases. To understand the mechanisms of arsenic resistance in solid tumor cells, we established two arsenic-resistant solid tumor cell lines, HepG2/AS and SGC7901/AS, isolated from human liver cancer cell line HepG2 and human gastric cancer cell line SGC7901, respectively, by a series of stepwise selections via treatment with increasing concentrations of arsenic trioxide. Three ABC transporter proteins, ABCB1, ABCC1 and ABCC2, were expressed increasingly and differently in two arsenic-resistant cell lines. Further, tumor suppressor p53 was overexpressed in two arsenic-resistant cell lines, but the levels of p53 mediators MDM2 and gankyrin, which regulate the ubiquitination of p53, increased simultaneously. In addition, an increase in the phosphorylation of Rb at Ser795 in the two cell lines might also result from the presence of MDM2 and gankyrin, which suggest that the inactivation of p53 and Rb contribute to drug resistance. These two arsenic-resistant solid tumor cell lines, HepG2/AS and SGC7901/AS, may be useful for studying the mechanism of arsenic resistance in solid tumors and may provide a way to overcome it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی میزان بیان اونکوپروتئین گانکیرین در رده های سلولی سرطان تخمدان و معده مقاوم و حساس به داروهای ضد سرطان

Background and purpose: Multidrug resistance (MDR) phenotype is a major complication in cancer chemotherapy. Gankyrin is a key point molecule in cell cycle regulation and may contribute to drug-resistance phenotype of tumor cells. The aim of this study was to compare the basal Gankyrin expression level in ovarian and gastric drug-resistant cells with their parental drug-sensitive cells. Materi...

متن کامل

Downregulation of P-gp, Ras and p-ERK1/2 contributes to the arsenic trioxide-induced reduction in drug resistance towards doxorubicin in gastric cancer cell lines

Multidrug resistance (MDR) to doxorubicin (DOX) limits its effectiveness against tumor cells. Arsenic trioxide (As2O3) has been reported to reduce MDR in various types of cancer, but the mechanisms involving Ras and p-glycoprotein (P-gp) remain to be fully elucidated. The objectives of the present study were to evaluate As2O3 in reversing MDR to DOX, and to identify the association in antitumor...

متن کامل

Blockage of multidrug resistance-associated proteins potentiates the inhibitory effects of arsenic trioxide on CYP1A1 induction by polycyclic aromatic hydrocarbons.

Arsenic is a toxic metalloid known to interact with drug-metabolizing enzymes. In the present study, we investigated the effects of arsenic trioxide (As2O3), recently used as an anticancer drug, on the expression of human cytochrome P450 (P450) 1A1, which bioactivates polycyclic aromatic hydrocarbons into mutagenic metabolites. Clinically relevant concentrations (0.25-5 microM) of As2O3 were de...

متن کامل

Multidrug resistance-associated protein 4 is a determinant of arsenite resistance.

Although arsenic trioxide (arsenite, As(III)) has shown a remarkable efficacy in the treatment of acute promyelocytic leukemia patients, multidrug resistance is still a major concern for its clinical use. Multidrug resistance-associated protein 4 (MRP4), which belongs to the ATP-binding cassette (ABC) superfamily of transporters, is localized to the basolateral membrane of hepatocytes and the a...

متن کامل

Effects of Salinispora derived metabolites against multidrug resistance, an in-silico study

Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2009